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Abstract

We discuss polynomial interpolation and derive sufficient conditions for the uniform convergence
of Chebyshev interpolants for different classes of functions. Rigorous results are illustrated with
a number of examples which include solitons on an infinite line with algebraic, exponential and
Gaussian decay rates. Suitable mappings of the real line to the interval [−1, 1] are considered for
each class of solutions.

1 Introduction

Numerical approximations of solitons on an infinite line can be obtained in a number of ways. One
method is to use the trigonometric interpolation and to run iterations of the fixed point problem in the
Fourier space [12]. Another method is to discretize the soliton in physical space with finite-difference
or finite-element schemes and to look for solutions of an algebraic system with the Newton-Raphson
iterative algorithm [8]. Yet another method is to use Chebyshev interpolation for approximations of
solitons [5] and for computations of their derivatives [15].

We have recently applied the Chebyshev interpolation method to gap solitons in coupled-mode
(Dirac) equations [6]. This method enabled us to obtain useful numerical approximations of eigen-
values in the linearized system, which indicate stability or instability of gap solitons. The error and
convergence of the Chebyshev interpolation were not controlled in [6]. Although the main results about
the uniform convergence of Chebyshev interpolants are well known and have been recently addressed
by Battles & Trefethen [1] and Reddy & Weideman [13], the subject lacks rigorous analysis and sharp
conditions on the interpolated functions. This issue is even more subtle for solitons on an infinite line
since the solitons are typically given by real analytic functions with branch point, pole or essential
singularities at infinity. Using a suitable mapping, the infinity is mapped to the end points of a finite
interpolation interval as it was discussed by Boyds [3, 4] and Cloot & Weideman [7]. These questions
are subjects of the present communication.

The article is structured as follows. We shall first derive general results on uniform convergence of
polynomial interpolants for analytic (and particularly, rational) functions in Section 2. We shall then
prove unconditional uniform convergence of Chebyshev interpolants for analytic functions in Section
3. The uniform convergence still holds even if the interpolated function is only piecewise continuously
differentiable. Section 4 discusses obstacles on the convergence of Chebyshev interpolants for solitons
on an infinite line.
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2 General polynomial interpolants

We will establish here a sufficient condition for the uniform convergence of a general polynomial inter-
polant when the interpolated function is real analytic on the interpolation interval. The condition is
satisfied if poles of the real analytic function in a complex plane are located far from the interpolation
interval (Theorem 2.1). If the condition of Theorem 2.1 is not satisfied, the polynomial interpolation
may diverge for a general distribution of the grid points. In particular, real analytic functions f(x) with
singularities near the interpolation interval may lead to the Runge phenomenon, when the polynomial
interpolant Ln(x) displays oscillations near the ends of the interpolation interval and the amplitude
of oscillations grows as n → ∞. We shall consider the Runge phenomenon in the case of rational
functions f(x) including f(x) = 1/(x − α) and f(x) = 1/(β2 + x2), where α and β are real-valued pa-
rameters. Applying the necessary and sufficient conditions for the uniform convergence of polynomial
interpolants to rational functions (Theorem 2.3), we will show that the convergence is still observed
for any α outside the interpolation interval but it fails for small values of β.

In what follows, we assume that the set {xk}
n
k=0 represents the distinct nodes (grid points) on the

interpolation interval [a, b] such that the grid points are dense in the limit n → ∞. For a given complex-
valued function f(x) on [a, b], we introduce the interpolation polynomial in the Lagrange form Ln(x)
according to the formula

Ln(x) =

n
∑

k=0

f(xk)ln,k(x), ln,k(x) =
(x − x0) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
. (2.1)

It is well-known [8] that the interpolating polynomial through distinct nodes is unique and independent
of the representation formula. It is also well-known that, if the function f(x) has a bounded (n + 1)-th
derivative on [a, b], then the remainder term of the polynomial interpolation is given by

f(x) − Ln(x) =
f (n+1)(ξ)

(n + 1)!
ωn+1(x), ωn+1(x) =

n
∏

k=0

(x − xk), (2.2)

where x, ξ ∈ [a, b]. If the function f(x) is real analytic on [a, b], then the remainder term can be
expressed by the Hermite contour integral:

f(x) − Ln(x) =
1

2πi

∮

γ

ωn+1(x)

ωn+1(z)

f(z)

z − x
dz, ∀x ∈ [a, b], (2.3)

where γ is a simple, closed, positively oriented contour in the complex plane that contains the point
z = x and lies in the domain of analyticity of f(z). The L∞-norm of the distance

En = sup
a≤x≤b

|f(x) − Ln(x)|

is said to be the error of polynomial interpolation. The polynomial interpolant Ln(x) converges uni-

formly to f(x) if limn→∞ En = 0.

Theorem 2.1 Let f(x) be a real analytic function on [a, b]. Assume that there exists a meromorphic

extension of this function in

Da,b = {z ∈ C : (2a − b) < x < (2b − a), −(b − a) < y < (b − a)}.

Then, limn→∞ Ln(x) = f(x) uniformly on [a, b] if |b − a| < R0, where R0 is the shortest distance from

[a, b] to the singular point of f(z).
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Proof. By using the pointwise estimate from the error formula (2.2), we find that

|f(x) − Ln(x)| ≤
Mn+1

(n + 1)!
(b − a)n+1 ∀x ∈ [a, b],

where Mn = sup
a≤x≤b

|f (n)(x)| exists for any n ∈ N since f(x) is real analytic function on [a, b]. By the

Taylor Theorem for analytic functions, the Taylor series

f(z) =
∞
∑

n=0

f (n)(x)

n!
(z − x)n

converges absolutely and uniformly in a small neighborhood of the point z = x ∈ [a, b]. By the Cauchy
formula for analytic functions, we have

f (n)(x) =
n!

2πi

∮

γ

f(z)

(z − x)n+1
dz,

where γ is a closed contour in the domain of analyticity of f(z) that contains the point x ∈ [a, b].
Therefore, the n-th order derivative is uniformly bounded by

|f (n)(x)| ≤
n!

2π

∮

γ

|f(z)|

|z − x|n+1
|dz| ≤

M0n!

Rn
0

,

where M0 = sup
z∈Da,b

|f(z)|. As a result, the pointwise estimate for the error of interpolation reduces to

the form

|f(x) − Ln(x)| ≤ M0
(b − a)n+1

Rn+1
0

, ∀x ∈ [a, b]

and, if |b − a| < R0, then Ln(x) → f(x) as n → ∞, uniformly on [a, b]. �

Corollary 2.2 The uniform convergence holds on any [a, b] if f(z) is entire in C.

Theorem 2.3 Let f(z) be a rational function in C with all poles outside [a, b] ⊂ R. The interpolation

error converges to zero uniformly if and only if

lim
n→∞

sup
x∈[a,b]

∣

∣

∣

∣

ωn+1(x)

ωn+1(zj)

∣

∣

∣

∣

= 0, (2.4)

for all poles zj of f(z) in C.

Proof. Let γ0 be a contour that encloses [a, b] but does not enclose any singularity of f(z). Let γ∞ be
the contour that encloses [a, b] and enclose all singularities of f(z) in C. By the Residue Theorem, the
integral (2.3) for γ = γ0 is equivalent to the representation

f(x) − Ln(x) =
1

2πi

∮

γ∞

ωn+1(x)

ωn+1(z)

f(z)

z − x
dz −

∑

all j

Res

[

ωn+1(x)

ωn+1(z)(z − x)
f(z); z = zj

]

.
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Since f(z) is a rational function, the integral (2.3) for γ = γ∞ is given by the residue at infinity, which
is identically zero for sufficiently large n. Therefore, there exists n0 ∈ N such that

∀n ≥ n0 : f(x) − Ln(x) = −
∑

all j

Res

[

ωn+1(x)

ωn+1(z)(z − x)
f(z); z = zj

]

, (2.5)

where x ∈ [a, b] and zj is a pole of f(z) in C. By using the triangle inequality, we obtain

sup
a≤x≤b

|f(x) − Ln(x)| ≤
∑

all j

sup
a≤x≤b

∣

∣

∣

∣

ωn+1(x)

ωn+1(zj)(zj − x)

∣

∣

∣

∣

|Res [f(z); z = zj ]| ≤ C max
all j

sup
a≤x≤b

∣

∣

∣

∣

ωn+1(x)

ωn+1(zj)

∣

∣

∣

∣

,

where C > 0. Under the condition (2.4), the error converges to zero uniformly on [a, b].

In the opposite direction, if the condition (2.4) is not satisfied, the right-hand-side of (2.5) contains
some terms 1/(zj − x) which do not cancel each other and do not vanish as n → ∞. In this case, the
error does not converge uniformly on [a, b]. �

Let [a, b] be normalized by [−1, 1] and the set of grid points {xk}
n
k=0 be equally spaced such that

xk = −1 + 2k
n for k = 0, ..., n. Let gn(z) be defined by |ωn+1(z)| = e

n
2

gn(z) in the domain

DA,B = {z = x + iy : −A < x < A, 0 < y < B} ,

where A > 1 and B > 0. By the Theorem on Riemann Sums, there exists C > 0 such that

gn(z) =
2

n

n
∑

k=0

log |z − xk| = g∞(z) + g̃n(z),

where g∞(z) =
∫ 1
−1 log |z−t|dt and |g̃n(z)| ≤ C

n uniformly in DA,B. The function g∞(z) can be evaluated
in the explicit form

g∞(z) =
1

2
(1 − x) log((1 − x)2 + y2) +

1

2
(1 + x) log((1 + x)2 + y2) − 2

+ y arctan
1 − x

y
+ y arctan

1 + x

y
.

In the limit y → 0, we obtain

g∞(x) = log(1 − x2) + x log
1 + x

1 − x
− 2,

where x ∈ [−1, 1]. According to the condition (2.4), if g∞(x) < g∞(zj) on [−1, 1] for any zj , then the
polynomial interpolant converges to the rational function f(x) uniformly on [−1, 1].

Let zj = α > 1 (that is the pole is located on the real axis outside the interpolation interval
[−1, 1]), then the level curve g∞(z) = limx→1 g∞(x) = g0 = 2(log 2 − 1) on Fig. 1(a) shows that
g∞(x) − g∞(α) < 0 on [−1, 1] for any α > 1. Therefore, the condition (2.4) is satisfied and the
polynomial interpolants converge uniformly for any α > 1.

If zj = iβ, β > 0 (that is the pole is located on the imaginary axis), then the graphs on Fig. 1(b,c)
show that g∞(x) − g∞(iβ) < 0 on [−1, 1] if β > 1

2 but g∞(x) − g∞(iβ) is sign-indefinite on [−1, 1]
if 0 < β < 1

2 . Therefore, the polynomial interpolants converge uniformly for β > 1
2 and diverge for

0 < β < 1
2 . We note that Theorem 2.1 gives a sufficient condition for uniform convergence at β > 2,

which is not sharp compared to the value β = 1
2 obtained with the use of Theorem 2.3.

Figures 2(a,b) show classical Runge’s examples of uniform convergence of the polynomial interpolants
on the equally spaced grid for the function f(x) = 1/(1+0.25x2) (left) since β = 5 > 1

2 and divergence
of the polynomial interpolants for the function f(x) = 1/(1 + 25x2) (right) since β = 1

5 < 1
2 .
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Figure 1: The level curve g0 = 2(log 2 − 1) of the function g∞(z) (left). The function g∞(x) − g∞(iβ)
for β = 0.6 (middle) and β = 0.4 (right).
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Figure 2: Polynomial interpolation on the equally spaced grid for f(x) = 1/(1 + 0.25x2) (left) and
f(x) = 1/(1 + 25x2) (right). Runge phenomenon is observed on the right panel.
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3 Chebyshev interpolants

We will show here that the Chebyshev interpolants enjoy uniform convergence if the function f(x)
satisfies much weaker smoothness assumptions. We say that the polynomial Ln(x) is a Chebyshev

interpolant if the grid points {xk}
n
k=0 on the normalized interval [−1, 1] are distributed at xk = cos πk

n
for k = 0, ..., n. These grid points are related to the extrema of the Chebyshev polynomials Tn(x) and
are sometimes referred to as the Chebyshev points of the second kind [13].

We first show that if f(x) is real analytic on [−1, 1], then the Chebyshev interpolants converge
uniformly without necessity to worry about singularities of f(z) in complex plane C (Theorem 3.2).
The statement was formulated in Theorem 5 of [15] and Theorem 2.1 of [1] but no proofs were given.
We give a rigorous proof of this theorem using the analytical methods of [13]. Furthermore, we find a
sharper sufficient condition on the function f(x) for the uniform convergence, which is satisfied if the
function is piecewise continuous differentiable (Theorem 3.3). The proof of this theorem is based on
much earlier works of Natanson [11], Jackson [9], and Bernstein [2] (see also review in [14]).

Lemma 3.1 If the grid points {xk}
n
k=0 are the Chebyshev nodes, the error function ωn+1(z) is computed

explicitly by the formula

ωn+1(z) =
1

2n

√

z2 − 1
[(

z +
√

z2 − 1
)n

−
(

z −
√

z2 − 1
)n]

. (3.1)

Proof. Let n be odd without loss of generality. We use formulas 1.391 and 1.392 on pp. 39–40 in [10]:

(n−1)/2
∏

k=1

(

1 −
sin2 θ

sin2 πk
n

)

=
sinnθ

n sin θ
,

n−1
∏

k=1

sin
πk

n
=





(n−1)/2
∏

k=1

sin
πk

n





2

=
n

2n−1
.

Let z2 = 1 − sin2 θ and transform ωn+1(z) to the form:

ωn+1(z) =
n
∏

k=0

(

z − cos
πkπ

n

)

=

(n−1)/2
∏

k=0

(

z2 − cos2 πkπ

n

)

= − sin2 θ

(n−1)/2
∏

k=1

sin2 πk

n

(n−1)/2
∏

k=1

(

1 −
sin2 θ

sin2 πk
n

)

= −
1

2n−1
sin θ sin(nθ).

If sin θ and sin(nθ) are expressed by z =
√

1 − sin2 θ, the last formula results in (3.1). �

Theorem 3.2 Let f(z) be an analytic function in Dρ, where Dρ is an open domain in C enclosed by

the ellipse γρ for some ρ > 1 parameterized by

γρ : z =
1

2

(

ρeiθ + ρ−1e−iθ
)

, 0 ≤ θ ≤ 2π. (3.2)
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Let {xk}
∞
k=0 be the Chebyshev nodes. Then, limn→∞ Ln(x) = f(x) uniformly on [−1, 1].

Proof. We use the error formula (2.3) and obtain the bound for the error term:

|f(x) − Ln(x)| ≤
ML

2πR

∑

z∈γρ

∣

∣

∣

∣

ωn+1(x)

ωn+1(z)

∣

∣

∣

∣

,

where x ∈ [−1, 1], R is the shortest distance between [−1, 1] and γρ, L is the arclength of γρ, and
M = sup

z∈Dρ

|f(z)|. By using the explicit formula (3.1), we evaluate ωn+1(z) on z ∈ γρ as follows:

ωn+1(z) =
1

2n+1

(

ρeiθ − ρ−1e−iθ
)(

ρneinθ − ρ−ne−inθ
)

, ∀z ∈ γρ.

On the other hand, ωn+1(x) at the interpolation interval [−1, 1] is computed in the limit ρ → 0 by

ωn+1(x) = −
1

2n−1
sin ϕ sin nϕ,

where x = cos ϕ and the interval [−1, 1] for x is mapped to [−π, 0] for ϕ. As a result, we obtain

∣

∣

∣

∣

ωn+1(x)

ωn+1(z)

∣

∣

∣

∣

=
4| sin ϕ|| sin nϕ|

|ρeiθ − ρ−1e−iθ||ρneinθ − ρ−ne−inθ|
≤

4

(ρ − ρ−1)(ρn − ρ−n)
.

Therefore, the interpolation error is uniformly bounded by

sup
−1≤x≤1

|f(x) − Ln(x)| ≤
2ML

πR(ρ − ρ−1)(1 − ρ−2n)
ρ−n,

which converges to zero as n → ∞, since ρ > 1. �

Theorem 3.3 Let f(x) satisfy Dini-Lipschitz condition on [−1, 1] in the sense that

∀x, y ∈ [−1, 1] : lim
δ→0

sup
|x−y|≤δ

|f(x) − f(y)| log δ = 0. (3.3)

Let {xk}
n
k=0 be the Chebyshev nodes. Then, limn→∞ Ln(x) = f(x) uniformly on [−1, 1].

Proof. By Jackson’s Theorem [9], if f(x) is a continuous function on the interpolation interval [a, b],
then

sup
a≤x≤b

|f(x) − Ln(x)| ≤ 12 sup
a≤x≤b

sup
|x−y|≤ 1

n

|f(x) − f(y)|,

where Ln(x) is a general polynomial interpolant. Let us define the auxiliary quantity:

λn+1 = sup
a≤x≤b

n
∑

k=0

∣

∣

∣

∣

ωn+1(x)

ω′
n+1(xk)(x − xk)

∣

∣

∣

∣

,

where ωn+1(x) is defined in (2.2). By Bernstein’s theorem [14] (formulated also as Theorem 2 in
Chapter 3 on p.539 of [11]), if {xk}

n
k=0 are the Chebyshev nodes, then the sequence {λn}n∈N grows at

most logarithmically and

λn ≤ 8 +
4

π
log n.
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Figure 3: Polynomial interpolation of f(x) = |x| on [−1, 1] when the grid is equally spaced (left) and
Chebyshev (right).

By Natanson’s Theorem [11], the uniform convergence of polynomial interpolants Ln(x) holds if

lim
n→∞

λn+1 sup
a≤x≤b

|f(x) − Ln(x)| = 0.

Using the previous bounds, we obtain that there exists C > 0 such that

λn+1 sup
a≤x≤b

|f(x) − Ln(x)| ≤ C log n sup
a≤x≤b

sup
|x−y|≤ 1

n

|f(x) − f(y)|.

If f(x) satisfies the Dini–Lipschitz condition (3.3), then the upper bound converges to zero as n → ∞
and the uniform convergence is proven. �

It is obvious that any Lipschitz function satisfies the Dini-Lipschitz condition (3.3). Figure 3(a,b)
show classical Bernstein’s examples of interpolation of function f(x) = |x| on [−1, 1]. The polynomial
interpolants through equally spaced grid points diverge at any point x ∈ [−1, 1]\{0} [5]. However, the
Chebyshev interpolation converges uniformly since f(x) satisfies the Dini–Lipschitz condition (3.3).

4 Chebyshev interpolation for solitons

Solitons are defined on the infinite line, which has to be mapped to [−1, 1] using a suitable mapping.
Even if the function is real analytic on an infinite line, it may have branch point, pole or essential singu-
larities at infinity, which are mapped to the end points of the interpolation interval. Since the resulting
function is no longer analytic on the interpolation interval, the general polynomial interpolation may
lead to divergence, while the Chebyshev interpolation is expected to enjoy uniform convergence under
the Dini–Lipschitz condition (3.3).

We consider three types of solitons on an infinite line with algebraic, exponential and Gaussian decay
rates at infinity, i.e.

(a) f(x) =
1

1 + x2
, (b) f(x) = sech(x), (c) f(x) = e−x2

. (4.1)
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We will study the error of the Chebyshev interpolation depending on the algebraic, exponential and
Gaussian mappings of the infinite line to the normalized interval [−1, 1]. These mappings were discussed
in details by Boyd [3, 4].

(a) Algebraic soliton. Let z = x√
L+x2

and rewrite the algebraic soliton in the form

1

1 + x2
=

1 − z2

1 − z2 + Lz2
.

Simple poles of the rational function occur at z = ± 1√
1−L

, which are on the real axis for L < 1 and on

the imaginary axis for L > 1. The best convergence is obtained in the case L = 1. Nevertheless, Figure
4 shows that the interpolation error quickly drops to a numerical zero (which is 10−15 in MATLAB
under Windows platform) as L grows, so that the larger is the value of n, the quicker the error drops.

(b) Exponential soliton. Let z = tanh(Lx/2) and rewrite the exponential soliton in the form

sech(x) =
2(1 − z2)1/L

(1 + z)1/L + (1 − z)1/L
.

The resulting function has no branch points for L−1 ∈ N, for which the best convergence is achieved.
The closest simple pole to the interpolation interval is located on the imaginary axis at the point
z = i tan(πL). When L → 0, the pole approaches to the origin and the interpolation error gets larger.
In addition, if L−1 /∈ N, the end points z = ±1 are branch points of the function f(z). Figure 5
(left) shows that the interpolation error increases both as L → 0 and as L → ∞. When L = 1, the
interpolation error is zero numerically, since the resulting function becomes a quadratic polynomial.
Figure 5 (right) shows that the interpolation error converges to zero as n → ∞ and the convergence is
faster for L = 0.5 than for L = 0.6.

(c) Gaussian pulse. Let z = 1 − 2e−
x2

L and rewrite the Gaussian pulse in the form

e−x2

=

(

1 − z

2

)L

.

The resulting function is a polynomial if L ∈ N and has a branch point at z = 1 if L /∈ N. Figure 6
shows that the interpolation error becomes larger in the limit L → 0. Since f(z) is a polynomial for
L ∈ N, the error is zero numerically if n ≥ L ∈ N.

To conclude, Chebyshev interpolants can be applied to solitons after the infinite line is mapped
to the interval [−1, 1]. This mapping brings singularities from infinity to the end points ±1. For
some values of parameter L, singularities are cancelled and the interpolation error converges to zero
faster than that for other values of L. Unfortunately, this property limits applications of Chebyshev
interpolants for numerical simulations of solitons in nonlinear evolution equations, since parameters of
solitons change in the time evolution. Therefore, even if L is picked optimally for the initial data to
reduce the interpolation error, it may not be optimal for final solitons in the long-time evolution of the
nonlinear equation.

Acknowledgement. M.C. thanks J. Boyd for his suggestion to use algebraic mappings instead of
exponential mappings. M.C. is supported by the NSERC graduate scholarship. D.P. is supported by
NSERC grant.
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n = 60 (red). Right: Convergence of the interpolation error for the exponential soliton f(x) = sech(x)
for L = 0.5 (blue) and L = 0.6 (red).
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for n = 20 (blue) and n = 40 (red).
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